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A configuration-interaction (CI) method in which the interaction matrix is never constructed 
has been investigated, following the original suggestion of Roos. Two methods have been used (1)  
for singlet states, which can be represented by a one determinant configuration of doubly occupied 
orbitals, CI with all singly and doubly excited configurations, (2)for states f9 r which the restricted 
self-consistent field approximation is a single determinant, CI 'with all singly and doubly excited 
determinants. In case (2), the wavefunction may not be exactly an eigenfunction of S 2. 

The methods were investigated using a double-zeta plus polarisation basis for CH 2. Both methods 
must give the same result for the lowest singlet ground state. Keeping the bond length fixed at 2.10 
and 2.04 bohr respectively the bond angle for the singlet and triplet were found to be 100.8 ~ and 132.0 ~ 
with energies -39.0312 a.u. and -39.0563 a.u. respectively. These are the lowest variational energies 
obtained for these systems; the singlet-triplet splitting is thus predicted to be 15.4 kcal/mol. 
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1. Introduction 

The purpose of this work is firstly to examine the original work of Roos [-1], 
and demonstrate that a large scale configuration-interaction (CI) calculation is as 
easy to perform as the self-consistent field (SCF) method. Secondly it is to apply 
the methods to CH2, for which there remains uncertainty in the singlet-triplet 
energy splitting. 

2. Large-Scale Configuration-Interaction Calculations: Using Configurations 
Which Are Eigenfunctions of S 2 and SI 

It is now apparent that to obtain 50% of the correlation energy (defined as the 
restricted Hartree-Fock energy minus the exact eigenvalue of Schr6dinger's non- 
relativistic equation), at the equilibrium geometry of a molecule, large scale CI 
calculations must be undertaken. To perform such calculations, it is necessary to 
have a method to find the lowest eigenvalue of a large matrix. One of the methods 
most commonly used is due to Nesbet [2]. The Nesbet method can be summarised 
as follows: 

N 
Let 71= ~ ci~i, (1) 

i=O 
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where ~o, ~1 . . .  ~N denote the configurations, with ~o representing usually the 
dominant configuration. Let c=(c o, ca, c2...cN) be an approximate eigenvector, 
at any particular stage of the calculation, corresponding to lowest energy. E and S 
are defined by 

E=  <~'1~[~'>, S=(~ ' l~ '  > (2) 

To improve a particular coefficient c, to ct + Ac~, the formula deducible from the 
secular equations is 

where 

and 

c, = a d ( E - / / 1 / )  (3) 

N 

a,= ~., Hxrc~-Ec, (4) 
r = 0  

nrs=< rl l s> (5) 
The corresponding lowering in the variational energy upper bound is 

AE= a iAc j (S+  AS) (6) 

where 

A S = 2ciA ci + (A cx) e (7) 

The important quantity required is therefore ax, which is determined directly from 
the Ith row of the secular matrix. One approach is therefore to store the secular 
matrix on magnetic tapes; read the matrix one row at a time, updating the cor- 
responding coefficient ci, the normalisation integral S and the energy E. The 
method is quickly convergent if there is one dominant determinant. 

Roos [lb] made the point that to Calculate and store the symbolic matrix 
elements for a 10,000 x 10,000 matrix on magnetic tapes would need ten magnetic 
tapes even if only 10% of the elements were non-zero. He therefore proposed an 
alternative method, using perturbation theory. The key step in the procedure is the 
simultaneous updating of all the elements of the eigenvector using the relation 

n - 2  

( E I -  Eo)ct (")= ~, E("-k)cx (k)- a1 ("- 1), (8) 
k = l  

where ET=(cbzlY[~), and J ;  is an appropriate Fock operator. ~z) is the 2th 
perturbation correction to the correlation energy, with the corresponding eigen- 
vector correction c ~z). a1 c"- 1) is given by Eq. (4), calculated using the (n - 1)th order 
eigenvector correction. 

A difficulty with this method appears to be that once perturbation theory is 
used the method may not be convergent. Roos does say that convergence can be 
obtained using variation-perturbation theory, but 10-15 order perturbation theory 
is necessary to obtain convergence to six significant figures in the correlation energy. 
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Another difficulty with this approach appears to be its extension to states other 
than singlet s ta tes-  in the following section it will be argued why this may be 
practically impossible. 

Roos' basic idea using perturbation theory for performing large scale CI 
calculations, when it is not possible to hold all the two-electron molecular integrals 
in core, appears excellent. 

3. The Construction of  a for Configurations Which Are Eigenfunctions of S 2 and S z 

In the simplest case, the dominant configuration is a single determinant of 
doubly occupied molecular orbitals. This is a case discussed by Roos [ la] .  He 
denoted double replacements by 7Ji] a, 7Ji~ ~liab , ~Ji ab, where the latter, for example, 
denotes the replacement of the occupied orbitals i and j by some excited orbitals 
a and b. Because there are two independent spin eigenfunctions ~gi~, there are 
therefore five different types of double replacements. The formulae for a can be 
expressed in terms of two-electron and one-electron molecular integrals, for 
example 

ai~-, ab = ~ Au~(ik~'l)Ck, ~ ~b + " "  (9) 
k,l 

aij -* ,b is the a corresponding to }Pi~ b, Ckl ~ ,b is the coefficient of 7J-~, and ( ik[j l )  is a 
two electron molecular integral. #, v take values between one and five, and denote 
the types of double replacements kP~ b, 7J~,~ respectively. A is a 5 x 5 matrix of 
coupling coefficients. Most of the formulae are given by Roos (Ref. [ la] ,  Eqs. 
(22-24)). Unfortunately, the matrix A and similar 5 x 5 matrices A', B, B', C, C'  
are given incorrectly by Roos in his paper, but he will be publishing corrected 
versions later. It is sufficient to note here that these matrices are not symmetric. 
We found some difficulty in deriving the correct formulae. 

Hence alj ~ ~b can be constructed from the list of two and one-electron molecular 
integrals. In our calculations it was possible to hold them all in core, and thus the 
Nesbet eigenvalue method can be followed exactly, We found the calculations to 
be quickly convergent, the correlation energy converging to 7 places of decimals 
in three full iterations. 

We further found that no loss of accuracy was obtained (to this accuracy), if 
the two electron molecular integrals and the eigenvector were stored in single 
precision, the remainder of the program being in double precision. The reason for 
this is that the Nesbet method for the lowest eigenvalue does not accumulate 
errors. On our IBM 360/175, this meant that if 300 Kbytes were available at 4 bytes 
per two-electron molecular integral, approximately N4/8  with N =  26 (molecular 
orbitals) could be stored. It will be seen that this is ideal for the AH 2 molecules in 
which we were interested. 

An attempt was then made to extend the method to a triplet state with a 
dominant configuration of the form d(~b~bzZ.. 2 a .~b, qS,+14~,+2). The number of 
different types of singly and doubly excited configurations increased significantly 
as compared to the singlet state. These are 

a a  a a  ab . ~ a b  ab . I ~ n + l , a  r[Jn+2,a. ~ r . / n / l , n + 2 ;  a .  
~Jii , I tJij ,  ~IJiaib ; I / J n + l , n + 2 ,  i ,n+ l ,  ~ i , , +  2 ,  - - i j  , - - i j  , ~lJi , 

a a . I i g n + l  n + 2  (10) 7J,+1, 7J,+2, --i , 7Ji 
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In (10), 1 ~< i<j<~n and a,b denote excited orbitals. It became apparent that it was 
extraordinarily difficult to derive the formula for a because of these many different 
types of configurations, besides the increase in the number of spin eigenfunctions 
of each type. It was decided to abandon this particular procedure for triplet states. 

4. The Alternative Approach Using Determinants instead of Configurations 

In this approach, it is assumed that there is a dominant configuration in the 
form of a single determinant 

�9 ..(P,(P.+ 1(P,+2 ..  �9 ~P,+m) (11) 

This is of course an eigenfunction of S: and Sz, and can be obtained from a 
Restricted SCF calculation. 

The single and double replacement determinants formed from (11) are easily 
written down 

7J~, ~ ,  ~i~, ~ ,  ~i~ (12) 

In this notation a bar denotes a space orbital associated with/~ spin and no bar 
denotes association with ~ spin. Further the notation implies 

l~<i~<n; l<~i~n+m; n+ l~< a ;  n+m+l<~a (13) 

and in gjajb, i>j and a>b, and similarly for ~Ty a~. The set of space orbitals are 
assumed to be orthonormal. Such a set can be obtained if the Fock operator 

n + m  

F=K+V+ ~ ( 2 J j - K j ) +  Z JJ (14) 
j = l  j = n + l  

is used in the Restricted SCF program (this facility is available in the ATMOL 
series of programs). The set of space orbitals are eigenfunctions of the matrix 
representation of this Fock operator. 

The formula for cr corresponding to the determinants in (12) is easily written 
down. It takes a similar form to Eq. (9), but the coefficients Au~ no longer have a 
complicated form, and are simply _+ 1. g is a linear combination of two (or one) 
electron integrals multiplied by either c~_~,, c7~ ,  c~j~b, cTj-~, c~j .~.  We 
understand that similar formulae will be published by Roos in a forthcoming 
review, and so they will not be given here. 

The eigenfunctions obtained in this method will not necessarily be eigen- 
functions of S 2 but when the dominant determinant is a singlet, the eigenfunctions 
will be eigenfunctions of S :  and S~. Hence the energies obtained by this and the 
previous method must be identical in this case. But, when the dominant deter- 
minant is a triplet, for example, the eigenfunction in not an eigenfunction of S 2. 
This is simply demonstrated by a CI calculation using the determinants 

7% = d(1~1~2~3~), 
kg~ = d(l~4a2~3~), (15) 
~rJ 2 : d(4~l  P2~3~). 
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7~1 and }//2 a re  single replacement determinants of ~go- Although 7% and ~/'1 + ~r'/2 
are pure triplet, ~ - ~2 is a mixture of triplet and quintet. The eigenfunction of 
the CI calculation will therefore not be pure triplet. To overcome this difficulty 
some double replacement determinants must be included. The same problem 
occurs if all single and double replacement determinants are included - to obtain 
pure triplet eigenfunctions some triple replacements must be included. 

This type of CI calculation may be called "Unrestricted" configuration 
interaction. It will give an upper bound to the lowest eigenvalue, and therefore 
if the triplet is the ground state at a particular geometry, the calculations will 
give an upper bound to the energy of this state. The problem can be put another 
way by noting that if a CI calculation on a triplet state using spin eigenfunctions 
is performed, then necessarily some three replacement determinants are im- 
plicitly included in the calculation. In calculations in which the determinant (11) 
has coefficient near unity (for a normalised wavefunction), the three replacement 
effects are extremely small. This is the case in the present calculations, and so the 
difference between our results and pure triplet results should be negligible. 

Roos has also discussed this alternative approach using determinants [lc],  but 
has concentrated on the case for which the dominant determinant was obtained 
from an unrestricted Hartree-Fock calculation. We think that the method here 
is more advantageous (a) for the above reason and (b) because there is only one 
set of spatial orbitals with which to deal; this has significant computational 
advantages. 

5. Calculations on  C H  2 

The CI method outlined in section 4 is suitable for calculating upper bounds 
to the energy of the lowest singlet and triplet states of CH2. 

All calculations used either 14 atomic slater-type basis functions or 25 such 
basis functions. The 14 function basis set was double-zeta using Carbon ls 
functions (exponents 5.23, 7.97), C2s (1.17, 1.82), C2p (1.26, 2.73) and Hls  (1.4, 
1.9). The 25 function basis set had in addition the polarisation functions C3d 
(exponent 1.5) and H2p (2.2). All atomic integrals were calculated using the 
ATMOL modification of Stevens' [5] package for Slater-type integrals to an 
accuracy of 1 x 10 -7. 

Calculations on the singlet state were performed using the ATMOL re- 
stricted SCF program. The integrals were transformed to molecular basis using 
the 4-index transformation program of the ATMOL package. Molecular two- 
electron integrals less than 1 x 10 .7 were assumed to be zero. They were then 
truncated to single predsion for the CI calculations. Likewise SCF calculations 
on the triplet state were performed (using the same atomic basis set and exponents) 
using the ATMOL restricted SCF open shell program, with the Fock operator 
defined by (14). 

It is thought that the atomic basis set is near optimal for both states, although 
this has not been checked in detail. In the singtet calculations the bond length 
was held fixed at 2.10 bohr, and in the triplet calculations the bond length was 
held fixed at 2.04 bohr. These are very close to the optimum values determined 
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by Bender et aI. in their CI  calculations, o f  2.126 and 2.056 bohr  respectively. 
It is t hough t  that  any adjustment  in bond  lengths will not  affect the energies by 
more  than 0.5 kcal/mole.  The experimental values for the bond  lengths are 2.10 
bohr  and 2.035 bohr  respectively. 

The 14 basis function calculations gave energies as follows: 

Angle SCF (hartrees) CI  (hartrees) 
Singlet 107 ~ - 38.85753 - 38.95198 
Triplet 136 ~ - 3 8 . 9 1 2 1 4  -38 .99463  

At  these non-opt imised geometries the triplet-singlet splitting is predicted to be 
26.8 kcal/mole.  

It has been well established by Bender et al. [3] that  the inclusion of  polarisa- 
t ion functions is impor tan t  for both  the SCF and CI  calculations. More  searching 
calculations with the 25 funct ion basis set were performed.  The results are presented 
in Table 1. 

For  the 1A 1 state, the SCF min imum appears to be at 102.3 ~ and the CI 
min imum at 100.8 ~ The basis set used by Bender et al. was contracted-gaussian 
in character,  and appears to roughly  correspond to double-zeta  plus polarisation. 
In their CI  calculations they considered at mos t  double  excitations f rom a two 
configurat ion representat ion o f  the g round  state, but  did not  include excitations 
f rom the inner shell or more  than one excitation f rom the valence shell (which 
was defined to include the lbl ,  4a 1 and 262 orbitals). They  used 469 configurat ions 
to predict  a bond  angle o f  101.0 ~ and an energy of  - 38.9898 hartrees. 

Fo r  the 3B1 state, the SCF min imum appears to be at 128.4 ~ and the CI  
min imum at 132.0 ~ Bender et al. give a CI  energy of  - 3 9 . 0 1 2 9  with 617 con- 
figurations for a bond  angle of  134 ~ It  is to be noted that  their SCF energy min imum 
is - 3 8 . 9 3 2 7  hartrees, compared  to our  m i n imum of  approximate ly  - 3 8 . 9 3 0 0  
hartrees. 

Our  calculated value for the singlet-triplet splitting is 15.4 kcal/mole,  to be 
compared  with Bender et al. 's predict ion o f  14.1 kcal/mole.  Thus a l though the 
CI  methods  are slightly different and their basis set is slightly more  flexible than 
ours, the calculations present results which are essentially in agreement.  It does 
not  appear  necessary to add to the remarks  o f  these authors  on both  the theoretical 

Table 1. Energies in Hartrees for singlet and triplet state of C H  2 

Angle Correlation Methylene state 
(degree) SCF energy CI (bond length) 

105 ~ -38.88819 - -  
103 ~ - 38.88838 -0.14334 - 39.03172 1A 1 
101 ~ -38.88835 -0.14350 -39.03185 (2.98 bohr) 
99 ~ - 38.88809 -0.14368 - 39.03177 

130 ~ - 38.92995 -0.12634 -39.05630 
132 ~ - 38.92978 -0.12658 --39.05636 3B 1 

134 ~ -38.92947 -0.12683 -39.05630 (2.038 bohr) 
136 ~ -38.92904 -0.12711 -39.05614 
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and exper imenta l  uncer ta in t ies  in the value for  this spli t t ing,  o ther  than  to state 
tha t  they suggest  a fur ther  r educ t ion  in the spl i t t ing o f  a p p r o x i m a t e l y  3 kca l /mole  
could  be ob ta ined  by a more  accura te  calcula t ion.  The  in teres ted reader  is there- 
fore referred to this reference and  references therein.  

6. Conclusion 

This p a p e r  has  examined  a pa r t i cu la r  large scale CI  m e t h o d  in t roduced  by  Roos .  
I t  appears  to be a clear ly successful m e t h o d  for  singlet  states for  which  the d o m i n a n t  
conf igura t ion  is a single de te rminan t ,  but  it seems very difficult to extend it to 
states of  o ther  symmetry .  As  an a l ternat ive  we have imp lemen ted  the m e t h o d  
which uses de te rminan t s  ins tead  o f  spin eigenfunct ions.  

One of us (A.H.P.) thanks the Iranian Government for a post-doctoral grant. 
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